
Glyph: Fast and Accurately Training Deep Neural
Networks on Encrypted Data

Anonymous Author(s)
Affiliation
Address
email

Abstract

Because of the lack of expertise, to gain benefits from their data, average users1

have to upload their private data to cloud servers they may not trust. Due to legal or2

privacy constraints, most users are willing to contribute only their encrypted data,3

and lack interests or resources to join deep neural network (DNN) training in cloud.4

To train a DNN on encrypted data in a completely non-interactive way, a recent work5

proposes a fully homomorphic encryption (FHE)-based technique implementing6

all activations by Brakerski-Gentry-Vaikuntanathan (BGV)-based lookup tables.7

However, such inefficient lookup-table-based activations significantly prolong8

private training latency of DNNs.9

In this paper, we propose, Glyph, a FHE-based technique to fast and accurately10

train DNNs on encrypted data by switching between TFHE (Fast Fully Homo-11

morphic Encryption over the Torus) and BGV cryptosystems. Glyph uses logic-12

operation-friendly TFHE to implement nonlinear activations, while adopts vectorial-13

arithmetic-friendly BGV to perform multiply-accumulations (MACs). Glyph fur-14

ther applies transfer learning on DNN training to improve test accuracy and reduce15

the number of MACs between ciphertext and ciphertext in convolutional layers.16

Our experimental results show Glyph obtains state-of-the-art accuracy, and re-17

duces training latency by 69% ∼ 99% over prior FHE-based privacy-preserving18

techniques on encrypted datasets.19

1 Introduction20

Deep learning is one of the most dominant approaches to solving a wide variety of problems such as21

computer vision and natural language processing [1], because of its state-of-the-art accuracy. By only22

sufficient data, DNN weights can be trained to achieve high enough accuracy. Average users typically23

lack knowledge and expertise to build their own DNN models to harvest benefits from their own data,24

so they have to depend on big data companies such as Google, Amazon and Microsoft. However, due25

to legal or privacy constraints, there are many scenarios where the data required by DNN training is26

extremely sensitive. It is risky to provide personal information, e.g., financial or healthcare records,27

to untrusted companies to train DNNs. Federal privacy regulations also restrict the availability and28

sharing of sensitive data.29

Recent works [2, 3, 4] propose cryptographic schemes to enable privacy-preserving training of DNNs.30

Private federated learning [4] (FL) is created to decentralize DNN training and enable users to train31

with their own data locally. QUOTIENT [3] takes advantage of multi-party computation (MPC) to32

interactively train DNNs on both servers and clients. Both FL and MPC require users to stay online33

and heavily involve in DNN training. However, in some cases, average users may not have strong34

interest, powerful hardware, or fast network connections for interactive DNN training [5]. To enable35

DNN training on encrypted data in a completely non-interactive way, a recent study presents the first36

fully homomorphic encryption (FHE)-based stochastic gradient descent technique [2], FHESGD.37

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

During FHESGD, a user encrypts and uploads private data to an untrusted server that performs38

both forward and backward propagations on the encrypted data without decryption. After uploading39

encrypted data, users can simply go offline. Privacy is preserved during DNN training, since input40

and output data, activations, losses and gradients are all encrypted.41

However, FHESGD [2] is seriously limited by its long training latency, because of its BGV-lookup-42

table-based sigmoid activations. Specifically, FHESGD builds a Multi-Layer Perceptron (MLP) with43

3 layers to achieve < 98% test accuracy on an encrypted MNIST after 50 epochs. A mini-batch44

including 60 samples takes∼ 2 hours on a 16-core CPU. FHESGD uses the BGV cryptosystem [6] to45

implement stochastic gradient descent, because BGV is good at performing large vectorial arithmetic46

operations frequently used in a MLP. However, FHESGD replaces all activations of a MLP by sigmoid47

functions, and uses BGV table lookups [7] to implement a sigmoid function. A BGV table lookup in48

the setting of FHESGD is so slow that BGV-lookup-table-based sigmoid activations consume ∼ 98%49

of the training time.50

In this paper, we propose a FHE-based technique, Glyph, to enable fast and accurate training over51

encrypted data. Glyph adopts the logic-operation-friendly TFHE cryptosystem [8] to implement52

activations such as ReLU and softmax in DNN training. TFHE-based activations have shorter latency.53

We present a cryptosystem switching technique to enable Glyph to perform activations by TFHE and54

switch to the vectorial-arithmetic-friendly BGV when processing fully-connected and convolutional55

layers. By switching between TFHE and BGV, Glyph substantially improves the speed of privacy-56

preserving DNN training on encrypted data. At last, we apply transfer learning on Glyph to not only57

accelerate private DNN training but also improve its test accuracy. Glyph achieves state-of-the-art58

accuracy, and reduces training latency by 69% ∼ 99% over prior FHE-based privacy-preserving59

techniques on encrypted datasets.60

2 Background61

Threat Model. Although an encryption scheme protects data sent to external servers, untrusted62

servers [1] can make data leakage happen. Homomorphic Encryption is one of the most promising63

techniques to enable a server to perform private DNN training [2] on encrypted data. A user sends64

encrypted data to a server performing private DNN training on encrypted data. After uploading65

encrypted data to the server, the user may go offline immediately.66

Fully Homomorphic Encryption. A homomorphic encryption [9] (HE) cryptosystem encrypts67

plaintext p to ciphertext c by a function ε. c = ε(p, kpub), where kpub is the public key. Another68

function σ decrypts ciphertext c back to plaintext p. p = σ(c, kpri), where kpri is the private69

key. An operation ? is homomorphic, if there is another operation ◦ such that σ(ε(x, kpub) ◦70

ε(y, kpub), kpriv) = σ(ε(x ? y, kpub), kpriv), where x and y are two plaintext operands. Each HE71

operation introduces a noise into the ciphertext. Leveled HE (LHE) allows to compute HE functions72

of only a maximal degree by designing a set of parameters. Beyond its maximal degree, LHE73

cannot correctly decrypt the ciphertext, since the accumulated noise is too large. On the contrary,74

fully HE (FHE) can enable an unlimited number of HE operations on the ciphertext, since it uses75

bootstrapping [6, 8] to “refresh” the ciphertext and reduce its noise. However, bootstrapping is76

computationally expensive. Because privacy-preserving DNN training requires an impractically77

large maximal degree, it is impossible to train a DNN by LHE. A recent work [2] demonstrates the78

feasibility of using FHE BGV to train a DNN on encrypted data.79

BGV, BFV, and TFHE. Based on Ring-LWE (Learning With Errors), multiple FHE cryptosystems [8,80

6], e.g., TFHE [8], BFV [10], BGV [6], HEAAN [11], are developed. Each FHE cryptosystem can81

more efficiently process a specific type of homomorphic operations. For instance, TFHE [8] runs82

combinatorial operations on individual slots faster. BFV [10] is good at performing large vectorial83

arithmetic operations. Similar to BFV, BGV [8] manipulates elements in large cyclotomic rings,84

modulo integers with many hundreds of bits. However, BGV has less scaling operations, and thus85

processes vectorial multiplications of ciphertexts faster [12, 13]. At last, HEAAN [11] supports86

floating point computations better. A recent work [14] demonstrates the feasibility of combining and87

switching between TFHE, BFV and HEAAN via homomorphic operations.88

Forward and Backward Propagation. DNN training includes both forward and backward propa-89

gations. During forward propagation, the input data go through layers consecutively in the forward90

direction. Forward propagation can be described as ul =Wldl−1 + bl−1 and dl = f(ul), where ul is91

the neuron tensor of layer l; dl−1 is the output of layer l− 1 and the input of layer l; Wl is the weight92

2

Operation BFV (s) BGV (s) TFHE (s)
MultCC 0.043 0.012 2.121
MultCP 0.006 0.001 0.092
AddCC 0.0001 0.002 0.312
TLU / 307.9 3.328

Table 1: The latency comparison of FHE opera-
tions. MultCC: ciphertext × ciphertext. MultCP:
ciphertext × plaintext. AddCC: ciphertext + ci-
phertext. TLU: table lookup.

FC Act FC (s) Act (s)
BFV / 9191 /
BGV BGV 2891 114980
TFHE TFHE 716800 65
BFV TFHE 9209 84
BGV TFHE 2909 82

Table 2: The comparison of mini-batch la-
tency of various FHE-based private training.
FC: fully-connected layer. Act: Activation.

tensor of layer l; bl−1 is the bias tensor of layer l − 1; and f() is the forward activation function.93

We use y and t to indicate the output of a neural network and the standard label, respectively. An94

L2 norm loss function is defined as E(W, b) = 1
2 ||y − t||

2
2. Backward propagation can be described95

by δl−1 = (Wl)
T δl ◦ f ′(ul), ∇Wl = dl−1(δl)

T , and ∇bl = δl, where δl is the error of layer l and96

defined as ∂E
∂bl

; f’() is the backward activation function; ∇Wl and ∇bl are weight and bias gradients.97

4bit 6bit 8bit 10bit 12bit0

50

100

150

Ti
m

e(
h)

FC Act

0

3

6

9

Er
ro

r(%
)

Figure 1: FHESGD-based MLP.

BGV-based FHESGD. BGV-based FHESGD [2] trains a98

3-layer MLP using sigmoid activations, and implements99

sigmoid by a lookup table. However, lookup-table-based100

sigmoid activations significantly increase mini-batch train-101

ing latency of FHESGD. As Figure 1 shows, with an in-102

creasing bitwidth of each entry of a BGV-based sigmoid103

lookup table, test accuracy of FHESGD improves and104

approaches 98%, but its activation processing time, i.e.,105

sigmoid table lookup latency, also significantly increases106

and occupies > 98% of mini-batch training latency.107

THFE-based Training. It is possible to fast and accurately implement homomorphic activations108

including ReLU and softmax of private training by TFHE, since the TFHE cryptosystem processes109

combinatorial operations on individual slots more efficiently. Table 1 compares latencies of various110

homomorphic operations implemented by BGV, BFV and TFHE. Compared to BGV, TFHE shortens111

table lookup latency by ∼ 100×, and thus can implement faster activation functions. However, after112

we implemented private DNN training by TFHE, as Table 2 exhibits, we found although (TFHE)113

homomorphic activations take much less time, the mini-batch training latency substantially increases,114

because of slow TFHE homomorphic MAC operations. As Table 1 shows, compared to TFHE,115

BGV [8] demonstrates 17× ∼ 30× shorter latencies for a variety of vectorial arithmetic operations116

such as a multiplication between a ciphertext and a ciphertext (MultCC), a multiplication between a117

ciphertext and a plaintext (MultCP), and an addition between a ciphertext and a ciphertext (AddCC).118

Therefore, if we implement activation operations by TFHE, and compute vectorial MAC operations119

by BGV, private DNN training obtains both high test accuracy and short training latency.120

BFV-TFHE Switching. Although a recent work [14] proposes a cryptosystem switching technique,121

Chimera, to homomorphically switch between TFHE and BFV, we argue that compared to BFV,122

BGV can implement faster private DNN training. As Table 1 shows, BGV computes MultCPs and123

MultCCs faster than BFV, because it has less scaling operations [12, 13]. In this paper, we propose124

a new cryptosystem technique to enable the homomorphic switching between BGV and TFHE.125

Though BFV supports faster AddCCs, we show our Glyph achieves much shorter training latency126

than Chimera in Section 5.1, since private MultCPs and MultCCs dominate training latency of DNNs.127

3 Glyph128

3.1 TFHE-based Activations129

To accurately train a FHE-based DNN, we propose TFHE-based homomorphic ReLU and softmax130

activation units. We construct a ReLU unit by TFHE homomorphic gates with bootstrapping, and131

build a softmax unit by TFHE homomorphic multiplexers.132

Forward ReLU. The forward ReLU of the ith neuron in layer l can be summarized as: if uil ≥ 0,133

dil = ReLU(uil) = uil; otherwise, dil = ReLU(uil) = 0, where uil is the ith neuron in layer l. A 3-bit134

TFHE-based forward ReLU unit is shown in Figure 2(a), where we first set the most significant bit135

(MSB) of dil , i.e., dil[2], to 0, so that dil can be always non-negative. We then get the negation of the136

MSB of uil , u
i
l[2], by a TFHE homomorphic NOT gate that even does not require bootstrapping [9].137

3

𝑢𝑢𝑙𝑙
𝑖𝑖 δ𝑙𝑙

𝑖𝑖
[2]

𝑢𝑢𝑙𝑙𝑖𝑖[1]

𝑢𝑢𝑙𝑙
𝑖𝑖[0]

𝑑𝑑𝑙𝑙
𝑖𝑖[2]

𝑑𝑑𝑙𝑙
𝑖𝑖[1]

𝑑𝑑𝑙𝑙
𝑖𝑖[0]

𝟎𝟎
[2]

δ𝑙𝑙
𝑖𝑖[1]

δ𝑙𝑙
𝑖𝑖[0]

𝑢𝑢𝑙𝑙
𝑖𝑖[2]

𝑢𝑢𝑖𝑖[2]

𝑢𝑢𝑙𝑙
𝑖𝑖[2]

δ𝑙𝑙-1
𝑖𝑖 [2]

𝑙𝑙
δ𝑙𝑙-1
𝑖𝑖 [1]

δ𝑙𝑙-1
𝑖𝑖 [0]TFHE gate

(a) 3-bit forward ReLU (b) 3-bit backward ReLU

𝑢𝑢𝑙𝑙
𝑖𝑖[0]

𝑠𝑠0[0: 2]
𝑢𝑢𝑖𝑖[1]𝑙𝑙 𝑢𝑢𝑖𝑖[2]𝑙𝑙

𝑠𝑠1[0: 2]
[0: 2]

𝑠𝑠3[0: 2]
𝑠𝑠2

𝑠𝑠4[0: 2]
𝑠𝑠5[0: 2]

[0: 2]
𝑠𝑠7[0: 2]
𝑠𝑠6

TFHE MUX
(c) 3-bit lookup-table softmax

𝑒𝑒 [𝑖𝑖]𝑢𝑢𝑙𝑙

Figure 2: TFHE-based activations.

If uil is positive, uil[2] = 1; otherwise uil[2] = 0. At last, we compute dil[0 : 1] by ANDing each bit of138

uil with uil[2]. So if uil is positive, dil = uil; otherwise dil = 0. An n-bit forward ReLU unit requires 1139

TFHE NOT gate without bootstrapping and n− 1 TFHE AND gates with bootstrapping.140

Backward iReLU. The backward iReLU for the ith neuron in layer l can be described as: if uil ≥ 0,141

iReLU(uil, δ
i
l) = δil−1 = δil ; otherwise, iReLU(uil, δ

i
l) = δil−1 = 0, where δil is the ith error of142

layer l. The backward iReLU takes the ith error of layer l, δil , and the MSB of uil , u
i
l[n− 1] as inputs.143

It generates the ith error of layer l − 1, δil−1. A 3-bit TFHE-based backward iReLU unit is shown in144

Figure 2(b), where we first compute the negation of the MSB of uil , u
i
l[2]. We then compute each bit145

of δil−1 by ANDing each bit of δil with uil[2]. If uil[2] = 0, δil−1 = δil ; otherwise δil−1 = 0. An n-bit146

backward iReLU unit requires 1 TFHE NOT gate without bootstrapping and n− 1 TFHE AND gates147

with bootstrapping. Our TFHE-based forward or backward ReLU function takes only 0.1 second,148

while a BGV-lookup-table-based activation consumes 307.9 seconds on our CPU baseline.149

Forward Softmax. A softmax operation takes n uils as its input and normalizes them into a prob-150

ability distribution consisting of n probabilities proportional to the exponentials of inputs. The151

softmax activation can be described as: softmax(uil) = dil =
eu

i
l

Σie
ui
l
. We use TFHE homomorphic152

multiplexers to implement a 3-bit softmax unit shown in Figure 2(c), where we have 8 entries denoted153

as S0 ∼ S7 for a 3-bit TFHE-lookup-table-based exponentiation unit in softmax; and each entry154

has 3-bit. The ith neuron uil is used to look up one of the eight entries, and the output is eu
i
l , and155

softmax unit dil can be further obtained by BGV additions and division. There are two TFHE gates156

with bootstrapping on the critical path of each TFHE homomorphic multiplexer. An n-bit softmax157

unit requires 2n TFHE gates with bootstrapping. Compared to BGV-lookup-table-based softmax, our158

TFHE-based softmax unit reduces the activation latency from 307.9 seconds to only 3.3 seconds.159

Backward Softmax. To efficiently back-propagate the loss of softmax, we adopt the derivative of160

quadratic loss function described as: isoftmax(dil, t
i) = δil = dil − ti, where ti is the ith ground161

truth. The quadratic loss function requires only homomorphic multiplications and additions. Although162

it is feasible to implement the quadratic loss function by TFHE, when considering the switching163

overhead from BGV to TFHE, we use BGV to implement the quadratic loss function.164

Pooling. It is faster to adopt TFHE to implement max pooling operations. But considering the165

switching overhead from BGV to TFHE, we adopt BGV to implement average pooling operations166

requiring only homomorphic additions and multiplications.167

3.2 Switching between BGV and TFHE168

BGV can efficiently process vectorized arithmetic operations, while TFHE runs logic operations169

faster. During private training, we plan to use BGV for convolutional, fully-connected, average170

pooling, and batch normalization layers, and adopt TFHE for activation operations. To use both171

BGV and TFHE, we propose a cryptosystem switching technique switching Glyph between BGV172

and TFHE cryptosystems.173

Both BGV and TFHE are built on Ring-LWE [8, 6], but they cannot naïvely switch between each other.174

Because BGV and TFHE work on different plaintext spaces. The plaintext space of BGV is the ring175

Rp = Z[X]/(XN+1) mod pr, where p is a prime and r is an integer. We denote the BGV plaintext176

space as ZN [X] mod pr. TFHE has three plaintext spaces [9] including TLWE, TRLWE and TRGSW.177

TLWE encodes individual continuous plaintexts over the torus T = R/Z mod 1. TRLWE encodes178

continuous plaintexts over R[X] mod (XN + 1) mod 1. We denote the TRLWE plaintext space179

as TN [X] mod 1, which can be viewed as the packing of N individual coefficients. TRGSW180

4

BGV

TRLWE slots TFHE

1

2 Key-Switch

Extract sample3

4

Key-Switch5

Extract sample6

Figure 3: Glyph switching.

Public data

Private
Medical data

C
O
N
V
1

S
o
f
t

Transfer

Frozen & unencrypted weights Train encrypted
Weights

B
N
1

R
e
L
U
1

P
o
o
l
1

C
O
N
V
2

B
N
2

R
e
L
U
2

P
o
o
l
2

F
C
1

R
e
L
U
3

F
C
2

C
O
N
V
1

S
o
f
t

B
N
1

R
e
L
U
1

P
o
o
l
1

C
O
N
V
2

B
N
2

R
e
L
U
2

P
o
o
l
2

F
C
1

R
e
L
U
3

F
C
2

Discard

Figure 4: Transferring unencrypted features.

encodes integer polynomials in ZN [X] with bounded norm. Through key-switching, TFHE can181

switch between these three plaintext spaces. Our cryptosystem switching scheme maps the plaintext182

spaces of BGV and TFHE to a common algebraic structure using natural algebraic homomorphisms.183

The cryptosystem switching can happen on the common algebraic structure.184

Our cryptosystem can enable Glyph to use both TFHE and BGV cryptosystems by homomorphically185

switching between different plaintext spaces, as shown in Figure 3.186

• From BGV to TFHE. The switch from BGV to TFHE homomorphically transforms the ciphertext187

of N BGV slots encrypting N plaintexts over ZN [X] mod pr to K TLWE-mode TFHE cipher-188

texts, each of which encrypts plaintexts over T = R/Z mod 1. The switch from BGV to TFHE189

includes three steps. ¶ Based on Lemma 1 in [14], ZN [X] mod pr homomorphically multiplying190

p−r is a ZN [X]-module isomorphism fromRp = ZN [X] mod pr to the submodule of TN [X]191

generated by p−r. Via multiplying p−r, we can convert integer coefficients in the plaintext space of192

BGV into a subset of torus T consisting of multiples of p−r. In this way, we extract N coefficients193

from the BGV plaintexts over ZN [X] mod pr to form TN . · Based on Theorem 2 in [14],194

we use the functional key-switching to homomorphically convert TN into TN [X], which is the195

plaintext space of the TRLWE-mode of TFHE. ¸ We adopt the SampleExtract function [14] of196

TFHE to homomorphically achieveK individual TLWE ciphertexts from TN [X]. Given a TRLWE197

ciphertext c of a plaintext µ, SampleExtract(c) extracts from c the TLWE sample that encrypts the198

ith coefficient µi with at most the same noise variance or amplitude as c.199

• From TFHE to BGV. The switch from TFHE to BGV is to homomorphically transform K TFHE200

ciphertexts in the TLWE-mode (m0,m1, . . . ,mK−1) in TK to a BGV N -slot ciphertext whose201

plaintexts are over ZN [X] mod pr. ¹ Based on Theorem 3 in [14], we can use the functional202

gate bootstrapping of TFHE to restrict the plaintext space of TFHE in the TLWE-mode to an203

integer domain ZK
pr

consisting of multiples of p−r. º The plaintext space transformation from ZK
pr

204

to ZN
pr is a ZN [X]-module isomorphism, so we can also use the key-switching to implement it.205

» At last, we can use the SampleExtract function of TFHE to homomorphically obtain the BGV206

N -slot ciphertext whose plaintexts are over ZN [X] mod pr.207

3.3 Transfer Learning for Private DNN Training208

Although FHESGD [2] shows that it is feasible to homomorphically train a 3-layer MLP, it is still209

very challenging to homomorphically train a convolutional neural network (CNN), because of huge210

computing overhead of homomorphic convolutions. We propose to apply transfer learning to reduce211

computing overhead of homomorphic convolutions in private CNN training. Although several prior212

works [15, 16] adopt transfer learning in privacy-preserving inferences, to our best knowledge, this is213

the first work to use transfer learning in private training.214

Transfer learning [17, 18, 19] can reuse knowledge among different datasets in the same CNN215

architecture, since the first several convolutional layers of a CNN extracts general features independent216

of datasets. Applying transfer learning in private training brings two benefits. First, transfer learning217

reduces the number of trainable layers, i.e., weights in convolutional layers are fixed, so that training218

latency can be greatly reduced. Second, we can convert computationally expensive convolutions219

between ciphertext and ciphertext to cheaper convolutions between ciphertext and plaintext, because220

the fixed weights in convolutional layers are not updated by encrypted weight gradients. Moreover,221

transfer learning does not hurt the security of FHE-based training, since the input, activations, losses222

and gradients are still encrypted.223

We show an example of applying transfer learning in private CNN training in Figure 4. We reuse224

the first two convolutional layers trained by unencrypted CIFAR-10, and replace the last two fully-225

connected layers by two randomly initialized fully-connected layers, when homomorphically training226

of the same CNN architecture on an encrypted skin cancer dataset [20]. During private training227

5

on the skin cancer dataset, we update weights only in the last two fully-connected layers. In this228

way, the privacy-preserving model can reuse general features learned from public unencrypted229

datasets. Meanwhile, in private training, computations on the first several convolutional and batch230

normalization layers are computationally cheap, since their weights are fixed and unencrypted.231

4 Experimental Methodology232

Cryptosystem Setting. For BGV, we used the same parameter setting rule as [21], and the HElib [7]233

library to implement all related algorithms. We adopted the mth cyclotomic ring with m = 210 − 1,234

corresponding to lattices of dimension ψ(m) = 600. This native plaintext space has 60 plaintext235

slots which can pack 60 input ciphertexts. The BGV setting parameters yield a security level of > 80236

bits. Both BGV and TFHE implement bootstrapping operations and support fully homomorphic237

encryption. We set the parameters of TFHE to the same security level as BGV, and used the TFHE [9]238

library to implement all related algorithms. TFHE is a three-level scheme. For first-level TLWE, we239

set the minimal noise standard variation to α = 6.10 ·10−5 and the count of coefficients to n = 280 to240

achieve the security level of λ = 80. The second level TRLWE configures the minimal noise standard241

variation to α = 3.29·10−10, the count of coefficients to n = 800, and the security degree to λ = 128.242

The third-level TRGSW sets the minimal noise standard variation to α = 1.42 · 10−10, the count of243

coefficients to n = 1024, the security degree to λ = 156. We adopted the same key-switching and244

extract-sample parameters of TFHE as [14].245

Simulation, Dataset and Network Architecture. We evaluated all schemes on an Intel Xeon E7-246

8890 v4 2.2GHz CPU with 256GB DRAM. It has two sockets, each of which owns 12 cores and247

supports 24 threads. Our encrypted datasets include MNIST [22] and Skin-Cancer-MNIST [20].248

Skin-Cancer-MNIST consists of 10015 dermatoscopic images and includes a representative collection249

of 7 important diagnostic categories in the realm of pigmented lesions. We grouped it into a 8K250

training dataset and a 2K test dataset. We also used SVHN [23] and CIFAR-10 [24] to pre-train our251

models which are for transfer learning on encrypted datasets. We adopted two network architectures,252

a 3-layer MLP [2] and a 4-layer CNN shown in Figure 4. The 3-layer MLP has a 28× 28 input layer,253

a 128-neuron hidden layer and a 32-neuron hidden layer. The CNN includes two convolutional layers,254

two batch normalization layers, two pooling layers, three ReLU layers and two fully-connected layers.255

The CNN architectures are different for MNIST and Skin-Cancer-MNIST. For MNIST, the input size256

is 28×28. There are 6×3×3 and 16×3×3 weight kernels, respectively, in two convolutional layers.257

Two fully connected layers have 84 neurons and 10 neurons respectively. For Skin-Cancer-MNIST,258

the input size is 28 × 28 × 3. There are 64 × 3 × 3 × 3 and 96 × 64 × 3 × 3 weight kernels in259

two convolutional layers, respectively. Two fully-connected layers are 128 neurons and 7 neurons,260

respectively. We quantized the inputs, weights and activations of two network architectures with 8-bit261

by the training quantization technique in SWALP [25].262

5 Results and Analysis263

5.1 MNIST264

FHESGD. During a mini-batch, the 3-layer FHESGD-based MLP [2] is trained with 60 MNIST265

images. Each BGV lookup-table operation consumes 307.9 seconds, while a single BGV MAC266

operation costs only 0.012 seconds. Although activation layers of FHESGD require only a small267

number of BGV lookup-table operations, they consumes 98% of total training latency. The FHESGD-268

based MLP makes all homomorphic multiplications happen between ciphertext and ciphertext269

(MultCC), though homomorphic multiplications between ciphertext and plaintext (MultCP) are270

computationally cheaper. The total training latency of a 3-layer FHESGD-based MLP for a mini-271

batch is 118K seconds, which is about 1.35 days [2].272

TFHE Activation and Cryptosystem Switching. We replace all activations of the 3-layer FHESGD-273

based MLP by our TFHE-based ReLU and softmax activations, and build it as a Glyph-based MLP. We274

also integrate our cryptosystem switching into the Glyph-based MLP to perform homomorphic MAC275

operations by BGV, and conduct activations by TFHE. The mini-batch training latency breakdown276

of the 3-layer Glyph-based MLP on a single CPU core is shown in Table 3(a). Because of the277

logic-operation-friendly TFHE, the processing latency of activation layers of Glyph significantly278

decreases. The cryptosystem switching introduces only small computing overhead. For instance,279

compared to the counterpart in the FHESGD-based MLP, FC1-f increases processing latency by280

only 0.96%, due to cryptosystem switching overhead. Because of fast activations, compared to the281

FHESGD-based MLP, our Glyph-based MLP reduces mini-batch training latency by 97.4% but282

6

Layer
BGV- BFV- Mul- Ad-
TFHE TFHE HOP tCC dCC Act Sw-

(s) (s) # # # # itch
FC1-f 1.37K 4.3K 201K 100K 100K 0 B-T
Act1-f 19.2 19.2 128 0 0 128 T-B
FC2-f 57.1 178.2 8.2K 4.1K 4.1K 0 B-T
Act2-f 4.82 5.3 32 0 0 32 T-B
FC3-f 6.02 14.2 640 320 320 0 B-T
Act3-f 34.76 3079 10 0 0 10 T-B
Act3-e 0.1 0.1 10 0 0 0 -
FC3-e 4.32 13.79 640 320 320 0 -
FC3-g 6.02 15.4 640 320 320 0 B-T
Act2-e 4.82 4.82 32 0 0 32 T-B
FC2-e 55.4 176.5 8.2K 4.1K 4.1K 0 -
FC2-g 62.1 183.2 8.2K 4.1K 4.1K 0 B-T
Act1-e 19.2 19.2 128 0 0 128 T-B
FC1-g 1.3K 4.3K 201K 100K 100K 0 -
Total 2.9K 12.3K 429K 213K 21K 330 -

(a) Glyph-based MLP.

Layer
BGV- BFV- Mul- Mul- Ad-
TFHE TFHE HOP tCP tCC dCC Act Swi-

(s) (s) # # # # # itch
Con1-f 69 226 73K 37K 0 37K 0 -
BN1-f 61 106 15K 8K 0 8K 0 B-T
Act1-f 321 321 4.1K 0 0 0 4.1K T-B
Pool1-f 17 56 18K 9.1K 0 9.1K 0 -
Conv2-f 33 104 35K 17K 0 17K 0 -
BN2-f 27 43 7K 3K 0 3K 0 B-T
Act2-f 151 151 1.9K 0 0 0 1.9K T-B
Pool2-f 7 22 7.2K 3.6K 0 3.6K 84 -
FC1-f 228 1.4K 67K 0 34K 34K 0 B-T
Act3-f 8.2 8.2 84 0 0 0 84 T-B
FC2-f 6.1 36.3 1.68K 0 840 840 0 B-T
Act4-f 68 68.6 10 0 0 0 10 T-B
Act4-e 0.1 0.1 10 0 0 10 0 -
FC2-e 6 36.2 1.68K 0 840 840 0 -
FC2-g 31 61.2 1.68K 0 840 840 0 B-T
Act3-e 32 32 84 0 0 0 84 T-B
FC1-g 227 1.4K 67K 0 34K 34K 0 -
Total 1.3K 4.2K 1716K 746K 106K 852K 14K -

(b) Glyph-based CNN.

Table 3: The mini-batch training latency comparison. BGV-TFHE is the latency of Glyph im-
plementing linear layers by BGV and non-linear layers by TFHE. BFV-TFHE is the latency of
Chimera [14] implementing linear layers by BFV and non-linear layers by TFHE. HOP includes
the number of homomorphic operations. MultCC indicates the number of multiplications between
ciphertext and ciphertext. MultCP means the number of multiplications between ciphertext and
plaintext. AddCC is the number of additions between ciphertext and ciphertext. Switch means the
cryptosystem switching. FC is a fully-connected layer. Act denotes an activation layer. BN is a
batch normalization layer. Pool denotes an average pooling layer. N-f means a N layer in forward
propagation. N-e is the error computation of a N layer in backward propagation. N-g is the gradient
computation of a N layer in backward propagation. B-T indicates BFV/BGV switches to TFHE. And
T-B indicates TFHE switches to BFV/BGV.

maintains the same test accuracy. The MLP can also be implemented by a recent cryptosystem283

switching technique Chimera [14], where linear layers are built upon BFV and nonlinear layers284

depend on TFHE. Because of faster BGV MultCCs, as Table 3(a) shows, our Glyph-based MLP285

(BGV-TFHE) decreases mini-batch training latency by 76.4% over Chimera (BFV-TFHE).286

0 2 4 6 8 10
Epoch

90
92
94
96
98

100

Te
st

 A
cc

ur
ac

y
(%

)

FHESGD-based MLP
Glyph w/o transfer learning
Glyph w/ transfer learning

Figure 5: Accuracy comparison on MNIST.

0 10 20 30 40
Epoch

50

75

100

Te
st

 A
cc

ur
ac

y
(%

)

FHESGD-based MLP
Glyph w/o transfer learning
Glyph w/ transfer learning

Figure 6: Accuracy comparison on Skin-Cancer.

Transfer Learning on CNN. We use our TFHE-based activations and cryptosystem switching to287

build a Glyph-based CNN, whose detailed architecture is explained in Section 4. We implement288

transfer learning in the Glyph-based CNN by fixing convolutional layers trained by SVHN and289

training only two fully-connected layers. The mini-batch training latency breakdown of the Glyph-290

based CNN with transfer learning on a single CPU core is shown in Table 3(b). Because the weights291

of convolutional layers are unencrypted and fixed, our Glyph-based CNN significantly reduces292

the number of MultCCs, and adds only computationally cheap MultCPs. The Glyph-based CNN293

decreases training latency by 56.7%, but improves test accuracy by ∼2% over the Glyph-based294

MLP. If we use Chimera to implement the same CNN, our Glyph-based CNN (BGV-TFHE) reduces295

training latency by 69% over Chimera (BFV-TFHE), due to much faster BGV MultCCs and MultCPs.296

7

Test Accuracy. The test accuracy comparison of the FHESGD-based MLP and the Glyph-based297

CNN is shown in Figure 5, where all networks are trained in the plaintext domain. It takes 5 epochs for298

the FHESGD-based MLP to reach 96.4% test accuracy on MNIST. After 5 epochs, the Glyph-based299

CNN can achieve 97.1% test accuracy even without transfer learning. By reusing low-level features of300

the SVHN dataset, the Glyph-based CNN with transferring learning obtains 98.6% test accuracy. The301

CNN architecture and transferring learning particularly can help the FHE-based privacy-preserving302

DNN training to achieve higher test accuracy when we do not have long time for training.303

5.2 Skin-Cancer-MNIST304

We built a Glyph-based MLP and a Glyph-based CNN for Skin-Cancer-MNIST by our TFHE-based305

activations, cryptosystem switching and transfer learning. The reductions of mini-batch training306

latency of Skin-Cancer-MNIST are similar to those on MNIST. The test accuracy comparison of the307

FHESGD-based MLP and the Glyph-based CNN is shown in Figure 6. For transferring learning,308

we first train the Glyph-based CNN with CIFAR-10, fix its convolutional layers, and then train its309

fully-connected layers with Skin-Cancer-MNIST. On such a more complex dataset, compared to310

the FHESGD-based MLP, the Glyph-based CNN without transferring learning increases training311

accuracy by 2% at the 15th epoch. The transferring learning further improves test accuracy of the312

Glyph-based CNN to 73.2%, i.e., a 4% test accuracy boost. TFHE-based activations, cryptosystem313

switching and transfer learning makes Glyph efficiently support deep CNNs.314

Table 4: The comparison of overall training latency of Glyph.
Dataset Name Thread # Mini-batch Epoch # Time Acc(%)

MNIST
FHESGD 48 2.3 hours 50 13.4 years 97.8
Chimera 48 0.14 hours 5 28.6 days 98.6
Glyph 48 0.04 hours 5 8 days 98.6

Cancer
FHESGD 48 2.4 hours 30 1.1 years 70.2
Chimera 48 0.29 hours 15 25.1 days 73.2
Glyph 48 0.08 hours 15 7 days 73.2

5.3 Overall Training Latency315

The overall training latency of multiple threads on our CPU baseline is shown in Table 4. We316

measured the mini-batch training latency by running various FHE-based training for a mini-batch.317

We estimated the total training latency via the product of the mini-batch training latency and the318

total mini-batch number for a training. For MNIST, training the MLP requires 50 epochs, each of319

which includes 1000 mini-batches (60 images), to obtain 97.8% test accuracy. Training the Glyph320

(BGV-TFHE)-based CNN on MNIST requires only 5 epochs to achieve 98.6% test accuracy. The321

overall training latency of the CNN is 8 days. Although a Chimera (BFV-TFHE)-based CNN can322

also achieve 98.6% test accuracy, its training requires 28.6 days, 2.6× slower than Glyph. For323

Skin-Cancer-MNIST, it takes 30 epochs, each of which includes 134 mini-batches. Training the324

Chimera-based or Glyph-based CNN requires only 15 epochs to obtain 73.2% test accuracy. By325

48 threads, the training of the Chimera-based CNN can be completed within 26 days. In contrast,326

training the Glyph-based CNN requires only 7 days.327

6 Conclusion328

In this paper, we propose, Glyph, a FHE-based privacy-preserving technique to fast and accurately329

train DNNs on encrypted data. Glyph performs ReLU and softmax by logic-operation-friendly TFHE,330

while conducts MAC operations by vectorial-arithmetic-friendly BGV. We create a cryptosystem331

switching technique to switch Glyph between TFHE and BGV. We further apply transfer learning on332

Glyph to support CNN architectures and reduce the number of homomorphic multiplications between333

ciphertext and ciphertext. Our experimental results show Glyph obtains state-of-the-art accuracy,334

and reduces training latency by 69% ∼ 99% over prior FHE-based privacy-preserving techniques on335

encrypted datasets.336

8

Broader Impact337

In this paper, we propose a FHE-based privacy-preserving technique to fast and accurately train338

DNNs on encrypted data. Average users, who have to rely on big data companies but do not trust339

them, can benefit from this research, since they can upload only their encrypted data to untrusted340

servers. No one may be put at disadvantage from this research. If our proposed technique fails,341

everything will go back to the state-of-the-art, i.e., untrusted servers may leakage sensitive data of342

average users.343

References344

[1] Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John345

Wernsing. CryptoNets: Applying Neural Networks to Encrypted Data with High Throughput346

and Accuracy. In International Conference on Machine Learning, 2016.347

[2] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi. Towards Deep Neural348

Network Training on Encrypted Data. In IEEE Conference on Computer Vision and Pattern349

Recognition Workshops, 2019.350

[3] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J. Kusner, and Adrià Gascón. QUOTIENT:351

Two-Party Secure Neural Network Training and Prediction. In ACM SIGSAC Conference on352

Computer and Communications Security, 2019.353

[4] Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume354

Smith, and Brian Thorne. Private federated learning on vertically partitioned data via entity355

resolution and additively homomorphic encryption. CoRR, abs/1711.10677, 2017.356

[5] Ryan Karl, Timothy Burchfield, Jonathan Takeshita, and Taeho Jung. Non-interactive mpc with357

trusted hardware secure against residual function attacks. Cryptology ePrint Archive, Report358

2019/454, 2019. https://eprint.iacr.org/2019/454.359

[6] Shai Halevi and Victor Shoup. Algorithms in HElib. In Advances in Cryptology, 2014.360

[7] Flavio Bergamaschi. HElib: an Implementation of homomorphic encryption. https://361

github.com/homenc/HElib, 2019.362

[8] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast Fully363

Homomorphic Encryption over the Torus. Journal of Cryptology, 2018.364

[9] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast Fully365

Homomorphic Encryption Library, August 2016. https://tfhe.github.io/tfhe/.366

[10] Hao Chen, Kim Laine, and Rachel Player. Simple encrypted arithmetic library-SEAL v2.1. In367

International Conference on Financial Cryptography and Data Security. Springer, 2017.368

[11] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo Song. Bootstrapping369

for Approximate Homomorphic Encryption. In International Conference on the Theory and370

Applications of Cryptographic Techniques, 2018.371

[12] Miran Kim and Kristin Lauter. Private Genome Analysis Through Homomorphic Encryption.372

BMC Medical Informatics and Decision Making, 15, 2015.373

[13] Anamaria Costache and Nigel P. Smart. Which ring based somewhat homomorphic encryption374

scheme is best? Cryptology ePrint Archive, Report 2015/889, 2015. https://eprint.iacr.375

org/2015/889.376

[14] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. Chimera: Combining377

ring-lwe-based fully homomorphic encryption schemes. Cryptology ePrint Archive, Report378

2018/758, 2018. https://eprint.iacr.org/2018/758.379

[15] Alon Brutzkus et al. Low Latency Privacy Preserving Inference. In International Conference380

on Machine Learning, 2019.381

[16] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. Epic: Efficient382

private image classification (or: Learning from the masters). Cryptology ePrint Archive, Report383

2017/1190, 2017. https://eprint.iacr.org/2017/1190.384

[17] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features385

in deep neural networks? In Advances in Neural Information Processing Systems 27, pages386

3320–3328. Curran Associates, Inc., 2014.387

9

https://eprint.iacr.org/2019/454
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://eprint.iacr.org/2015/889
https://eprint.iacr.org/2015/889
https://eprint.iacr.org/2015/889
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2017/1190

[18] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-388

level image representations using convolutional neural networks. In The IEEE Conference on389

Computer Vision and Pattern Recognition (CVPR), June 2014.390

[19] Jiuxiang Gu, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing Shuai, Ting391

Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al. Recent advances in convolutional neural392

networks. Pattern Recognition, 77:354–377, 2018.393

[20] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a large collection394

of multi-source dermatoscopic images of common pigmented skin lesions. Scientific data,395

5:180161, 2018.396

[21] Jack L. H. Crawford, Craig Gentry, Shai Halevi, Daniel Platt, and Victor Shoup. Doing Real397

Work with FHE: The Case of Logistic Regression. In the Workshop on Encrypted Computing398

Applied Homomorphic Cryptography, 2018.399

[22] Yann LeCun, Corinna Cortes, and CJ Burges. MNIST Handwritten Digit Database. AT&T Labs400

[Online]. Available: http://yann.lecun.com/exdb/mnist, 2010.401

[23] Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural networks applied to402

house numbers digit classification. arXiv preprint arXiv:1204.3968, 2012.403

[24] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset, 2014.404

http://www.cs.toronto.edu/kriz/cifar.html.405

[25] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and406

Chris De Sa. SWALP : Stochastic weight averaging in low precision training. In International407

Conference on Machine Learning, 2019.408

10

	Introduction
	Background
	Glyph
	TFHE-based Activations
	Switching between BGV and TFHE
	Transfer Learning for Private DNN Training

	Experimental Methodology
	Results and Analysis
	MNIST
	Skin-Cancer-MNIST
	Overall Training Latency

	Conclusion

